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Abstract

Purpose – To present a novel moving boundary problem related to the shoreline movement in a
sedimentary basin and demonstrate that numerical techniques from heat transfer, in particular
enthalpy methods, can be adapted to solve this problem.

Design/methodology/approach – The problem of interest involves tracking the movement (on a
geological time scale) of the shoreline of a sedimentary ocean basin in response to sediment input,
sediment transport (via diffusion), variable ocean base topography, and changing sea level. An
analysis of this problem shows that it is a generalized Stefan melting problem; the distinctive feature, a
latent heat term that can be a function of both space and time. In this light, the approach used in this
work is to explore how previous analytical solutions and numerical tools developed for the classical
Stefan melting problem (in particular fixed grid enthalpy methods) can be adapted to resolve the
shoreline moving boundary problem.

Findings – For a particular one-dimensional case, it is shown that the shoreline problem admits a
similarity solution, similar to the well-known Neumann solution of the Stefan problem. Through the
definition of a compound variable (the sum of the fluvial sediment and ocean depths) a single
domain-governing equation, mimicking the enthalpy formulation of a one-phase melting problem, is
derived. This formulation is immediately suitable for numerical solution via an explicit time
integration fixed grid enthalpy solution. This solution is verified by comparing with the analytical
solution and a limiting geometric solution. Predictions for the shoreline movement in a constant depth
ocean are compared with shoreline predictions from an ocean undergoing tectonic subsidence.

Research limitations/implications – The immediate limitation in the work presented here is that
“off-shore” sediment transport is handled in by a “first order” approach. More sophisticated models
that take a better accounting of “off shore” transport (e.g. erosion by wave motion) need to be
developed.

Practical implications – There is a range of rich problems involving the evolution of the earth’s
surface. Many of the key transport processes are closely related to heat and mass transport. This paper
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illustrates that this similarity can be exploited to develop predictive models for earth surface
processes. Such models are essential in understanding the formation of the earth’s surface and could
have a significant impact on natural resource (oil reserves) and land (river restoration) management.

Originality/value – For the most part the solution methods developed in this work are extensions of
the standard numerical techniques used in heat transfer. The novelty of the work presented rests in the
nature of the problems solved, not the method used. The particular novel feature is the time and space
dependence of the latent heat function; a feature that leads to interesting analytical and numerical
results.

Keywords Sedimentation, Transport management, Tectonics

Paper type Research paper

1. Introduction
A moving boundary problem is a problem in which one of the domain boundaries is an
unknown. The classic example is the Stefan melting problem (Crank, 1984) a heat
transfer problem requiring the tracking of the a priori unknown melting front. Since,
the melt front position needs to be determined as part of the solution the problem
formulation requires an additional boundary condition – the Stefan condition,
obtained by balancing the net heat flux arriving at the melting front with the rate of
evolution of latent heat.

Typically moving boundary problems only have a limited number of analytical
solutions (Carslaw and Jaeger, 1986) and as a result, from the advent of digital
computers, see Eyres et al. (1946) and Price and Slack (1954), there has been extensive
development of numerical methods. The key feature in these methods is the
mechanisms used to track the continuously moving boundary over the discrete grid of
nodes that define the numerical method. Very broadly speaking, these mechanisms fall
into one of three classes.

(1) Fixed grid methods. These methods employ a grid of nodes that remain fixed in
space and track the boundary by use of an auxiliary variable. An example is the
so-called enthalpy methods, used in the analysis solid-liquid phase change
(Eyres et al., 1946; Price and Slack, 1954; Voller and Cross, 1981; Crank, 1984;
Voller et al., 1990; Voller, 1996). In these methods, the melting front is tracked by
the evaluation of a nodal liquid farction field, the elements of which take values
0 # f # 1:

(2) Deforming grid methods. In these methods, a line of nodes is located on the
moving boundary and as the solution evolves the space grid deforms to ensure
that these nodes remain on the boundary (Lynch and O’Neill, 1981; Lynch, 1982;
Beckett et al., 2001).

(3) Hybrid methods. Hybrid methods employ elements of both fixed and deforming
grids, e.g. local front tracking (Udaykumar et al., 1999; Crank, 1957) which uses
a fixed background grid and employs local front tracking schemes to follow the
movement of the boundary.

Recently a new class of moving boundary problems related to tracking the evolution of
sediment deposits on the earth surface has been identified. Two examples are:

(1) the evolution of sediment fans in desert environments (Paola et al., 1992;
Marr et al., 1999, 2000; Kawakami et al., 2003); and
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(2) the movement of an ocean basin shoreline, on geological time scales, in response
to a sediment input (Swenson et al., 2000; Voller et al., 2004).

This later problem can be formulated in terms of a diffusion equation and a shoreline
sediment balance condition that can be interpreted as a generalization of the classic
Stefan condition. Swenson et al. (2000), develop a deforming grid solution of this
shoreline tracking problem; a solution that has been used to validate the underlying
diffusion and generalized Stefan model by comparison with laboratory experiments
(Paola, 2000).

In this work, it is shown that the ocean basin shoreline problem can be posed as
Stefan melting problems, in which the latent heat term is a function of both space and
time. This is an interesting condition, which in the strict confines of heat transfer has
little if no physical basis. As a result, within the authors’ knowledge, there have been
no prior attempts to solve melting problems with a variable latent heat. In the context
of sediment transport on the earth surface, however, the condition is physical
reasonable, providing the necessary motivation and rational to develop suitable
numerical solutions for variable latent heat problems. The main focus of this work is
to, in the context of tracking an ocean basin shoreline, develop and present fixed grid
enthalpy methods for the solution of variable latent heat Stefan melting problems. For
the most part the solution methods developed are basic extensions of the standard
enthalpy method (Eyres et al., 1946; Price and Slack, 1954; Voller and Cross, 1981;
Crank, 1984; Voller et al., 1990; Voller, 1996) and the novelty of the work presented rests
in the nature of the problems solved not the method used.

2. A basic shoreline problem
A basic shoreline problem involves the shoreline progradation (seaward translation)
into a basin with a constant sloping basement (b) and a fixed ocean level (z ¼ 0) and no
tectonic subsidence of the earth’s crust – the last two conditions a good approximation
for modern continental margins with large sediment supply and small subsidence
rates. A schematic 3D section of such a basin indicating the temporal variables is
shown in Figure 1. Sediment is generated by erosion of the uplands and transported
over the land surface by fluvial processes, i.e. by water flowing through a network of
surface channels. In the typical time scales of problems of sedimentary geology these
channels are not fixed but can migrate (braid) over the land surface and expand (flood)
and contract with time. The sediment arriving at the shoreline fills the near shore
region or is carried off-shore by ocean currents and wave motions. An excess of
sediment arriving at the shoreline will result in an advance of the shoreline, s(t); the
moving boundary of interest.

Governing equations can be obtained by considering a representative 2D
cross-section defined by axis of the land surface height and horizontal distance from
the sediment source, see front of Figure 1. In this domain two distinct regimes can be
identified in the system

(1) a sub-aerial, fluvial domain; and

(2) an offshore, submarine domain.

In the fluvial-domain, sediment transport and deposition by river systems on
geological time scales is modeled by the diffusion equation (Swenson et al., 2000).
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›h

›t
¼ n

›2h

›x 2
; 0 # x # sðtÞ ð1Þ

where s(t) is the position of the shoreline, h is the height of the sediment surface above a
datum and the diffusivity n depends on the characteristics of the sediment grains and
the time-averaged water line-discharge over the fluvial surface. Appropriate boundary
conditions on equation (1) are:

n
›h

›x

����
x¼0

¼ 2qðtÞ; and hjx¼sðtÞ¼ 0 ð2Þ

where q is a prescribed sediment line-flux entering the system. The problem is closed
by invoking the sediment balance on the moving shoreline. This requires a treatment
of the offshore sub-aqueous sediment transport. In the physically validated model
proposed by Swenson et al. (2000), it is assumed that the time scale for grain movement
by sub-aqueous avalanches is much smaller than for fluvial processes in the sub-aerial
domain. This sets the offshore sediment surface at a fixed slope of repose a and the
off-shore deposit forms a sediment wedge. A sediment balance at the shoreline then
equates the sediment flux arriving at the shoreline to rate at which the submarine
sediment wedge can be moved, i.e.

n
›h

›x

����
x¼s

¼ 2gs
ds

dt
ð3Þ

where through geometric construction:

aðu2 sÞ ¼
ab

a2 b
s ¼ gs ð4Þ

Figure 1.
Schematic of sediment
ocean basin
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is identified as the depth of the ocean at the location of the moving sediment toe,
x ¼ uðtÞ – the location where the submarine sediment wedge intersects the ocean
basement, see Figure 1. Equation (3) also follows from the more general shoreline
condition, accounting for tectonic subsidence and ocean level change presented by
Swenson et al. (2000). Also note that, on defining a latent heat term as L ¼ gs;
(equation (3)) has the form of a one-phase Stefan melting condition (Crank, 1984). For
this reason we refer to equation (3) as the shoreline-Stefan condition; the distinguishing
feature being the space dependent latent heat term gs.

3. An analytical solution
Voller et al. (2004) have derived a similarity solution for the problem defined by
equations (1)-(3). Briefly, on rewriting these equations in terms of the similarity variable:

j ¼
x

2t 1=2
; ð5Þ

and the scaled sediment height:

h ¼
h

2t 1=2
; ð6Þ

the governing equation for fluvial transport can be written as an ODE. The solution is:

hðjÞ ¼
q

n
l

e2j 2=n þ p 1=2n21=2j erfðjn21=2Þ

e2l 2=n þ p 1=2n21=2lerfðln21=2Þ

 !
2 j

" #
ð7Þ

and, on using the shoreline-Stefan condition (equation (3)), the shoreline movement is
given by:

s ¼ 2lt 1=2 ð8Þ

where the constant l is obtained on solution of:

p 1=2n21=2erfðln21=2Þ

e2l 2=n þ p 1=2n21=2lerfðln21=2Þ
¼

1

l
2

2gl

q
ð9Þ

4. A general shoreline problem
The problem outlined in Sections 1 and 2 is restricted to a one-dimensional movement
of the shoreline, a specified non-subsiding ocean floor (basement), and a constant ocean
level. These restrictions can be removed and the close connection to heat transfer
problems retained under the assumption of a steep ocean wedge, a!1; see Figure 2.
This assumption – justified by the observation that submarine sediment slopes are
typically much steeper than fluvial (river) slopes – leads to a governing fluvial
transport equation:

›h

›t
¼ 7 · ðn7hÞ2

›G

›t
ð10Þ

where the datum is the sea level, the operator:
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7 ;
›

›x
;
›

›y
;Gðx; y; tÞ

measures the depth of the sediment below sea-level – on the shoreline this value is
the ocean depth Gs – and temporal changes in G account for subsidence or relative
sea-level changes. The domain of equation (10) is the sub-aerial fluvial surface.
Sediment is supplied to the system by specifying point source on the boundary. On
the shoreline boundary of the fluvial domain the shoreline-Stefan balance can be
written as:

2n7h · n ¼ Gsv · n ð11Þ

where n is the normal on the shoreline pointing into the ocean and v is the velocity of
the shoreline. Equations (10) and (11) are closely related to the two-dimensional
Stefan problem counterparts; the difference is the subsidence sink term in equation
(10) and the space and time dependent latent heat term in equation (11).

5. An enthalpy formulation
The close connection between the shoreline problem of Section 4 and the classic Stefan
problem allows for the application of the extensive moving boundary technologies
developed for the classic problem. In this case, we are interested in developing fixed
grid enthalpy methods. For the shoreline problem of Section 4, an enthalpy function is
defined as:

H ¼ hþ G ð12Þ

Figure 2.
Ocean basin with cliff-face
shoreline
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To use equation (12) to arrive at an appropriate enthalpy method consider an arbitrary
closed two-dimensional control area A, made up of a fluvial Af and a submarine Aa

contribution, separated by the shoreline sðx; y; tÞ ¼ 0; Figure 3. The closed surface of
the control area S ¼ Sf (the contiguous section in the fluvial domain) þ Sa (the
contiguous section in the submarine domain). On noting that in the submarine domain:

Aa

Z
HdA ¼ 0 ð13Þ

and on its surface Sa,7h · n ¼ 0; a sediment balance on the control area can be written
as:

›

›t
Af

Z
HdA ¼

Sf

Z
n7h · n dS ð14Þ

where n is the outward pointing normal on S. On noting that h ¼ 0 on the shoreline
boundary, and using the Leibniz rule (Reynolds transport theorem) on the left of
equation (14):

Af

Z
›H

›t
dAþ

s

Z
Gsv · n dS ¼

Sfþs

I
n7h · n dS 2

s

Z
n7h · n dS ð15Þ

By the shoreline-Stefan condition in equation (11) the integrals over the shoreline
section of the boundary cancel out, and since the boundary Sf þ s encloses the area Af,
the divergence theorem can be used to arrive at:

Af

Z
›H

›t
2 7 · ðn7hÞdA ¼ 0 ð16Þ

Since, the chosen control area is arbitrary the argument of equation (16) has to be zero
everywhere, i.e.

Figure 3.
Arbitrary control area
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›H

›t
¼ 7 · ðn7hÞ ð17Þ

with, by equation (12):

h ¼
H 2 G if H $ G

0 otherwise

(
ð18Þ

The formulation in equations (17) and (18), which is applicable thought out the entire
domain (fluvial and submarine) matches the basic enthalpy formulation, e.g. see Crank
(1984), it is critical to note, however, that in this case the latent heat term G can be a
function of space (a variable ocean basement) and time (subsidence or ocean level
change).

6. A fixed grid solution
Numerical solutions of equations (17) and (18) can developed from conventional
enthalpy methods, e.g. time explicit, apparent specific heat, and source based (Crank,
1984; Voller, 1996). These methods can be based on both finite element and finite
difference discretizations. The basic time explicit approach can be applied without
modification. Owing to the space and time variations of the latent heat term, however,
implicit time integration schemes based on an apparent specific heat or source term
could require significant modification.

As an example, a basic explicit time integration finite difference solution of
equations (17) and (18) is developed. The solution domain is considered to be a
two-dimensional rectangular region in the x-y plane of the ocean level. As shown in
Figure 4, this region is covered by a grid of conforming square control volumes of side
length D; a node point is placed in the center of each volume. At the node point on row i
and column j, removed from the domain boundaries, an explicit time integration of
equation (17) is:

Figure 4.
A representative grid of
square control volunes
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Hnew
ij ¼ Hij þ

Dt

D2
nwðhij21 2 hijÞ2 neðhij 2 hijþ1Þ
�

þnsðhi21j 2 hijÞ2 nnðhij 2 hiþ1jÞ
� ð19Þ

where nw indicates evaluation of the diffusivity at the interface between nodes (i, j 2 1)
and (i, j), etc. and Dt; the simulation time step, is chosen such that the largest value of
nDt # 0:25D2 to ensure a stable scheme. At nodes in control volumes located along the
domain edges the appropriate terms on the right hand side of equation (19) are
dropped, e.g. along the west domain edge ð j ¼ 1Þ

nwðhij21 2 hijÞ ¼ 0 ð20Þ

The scheme equation (19) also needs to be modified at nodes where a sediment source
is applied. For example, if a source qm3/s is applied at the southwest domain corner the
scheme at node i ¼ 1; j ¼ 1 is written as:

Hnew
11 ¼ H 11 þ

Dt

D2
q2 neðh11 2 h12Þ2 nnðh11 2 h21Þ
� �

ð21Þ

In a time step, the current nodal values of the sediment depth below sea level Gij –
values that follow a prescribed path – are calculated. Then equation (19) and its
variants are solved to provide an update of the sediment enthalpy at each domain node
point. Following, the nodal sediment heights above sea-level are calculated from a
discretization of equation (18), i.e.

hnew
ij ¼

Hnew
ij 2 Gij if Hnew

ij . Gij

0 otherwise

(
ð22Þ

which completes the time step calculations.

7. Results
An initial test problem of the above scheme is for the case where a line source
q ¼ 1 m3=m is applied on the south edge (i ¼ 1; y ¼ 0) of the domain and the ocean
slopes away from this edge with a constant slope b In this case, the sediment depth
below sea level is a function of y alone, i.e. Gðx; y; tÞ ¼ yb: Further, the shoreline
movement is one-dimensional and can be analytically determined by substituting
g ¼ b in equations (8) and (9). Numerical predictions of the shoreline movement are
obtained using a grid of 100 £ 100 square control volumes of unit size and a time step
of 0.1; grid dependence studies have shown these to be sufficient choices. A numerical
position of the shoreline is determined by locating the control volume row where the
shoreline is located, i.e. the row where 0 , Hi , ði2 0:5ÞDb and setting:

s ¼ ði2 1ÞDþ
Hi

Gi

D ð23Þ

Numerical predictions for the shoreline movement, for various values of b are shown in
Figure 5, the position is recorded when the shoreline crosses a line of nodes. The
symbols in this figure are the numerical predictions the lines the analytical solution.
The accuracy of these results clearly verifies the enthalpy scheme in equations (19)-(22).
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An immediate extension of the previous problem is to introduce a temporal change in
addition to a spatial change by setting:

Gðx; y; tÞ ¼ ybð1 þ utÞ ð24Þ

This represents an ocean in which the basement hinges about the line y ¼ 0; such that
the value of the y-slope increases with time. There is no analytical solution in this case.
It is noted, however, that as time advances, the rate of accommodation space, created
under the fluvial deposit by basement subsidence, approaches the rate of sediment
supply across y ¼ 0: Balancing these rates, assuming a constant values of u,

q ¼
sup2

bu

2
ð25Þ

gives on rearrangement an upper bound on the shoreline position:

sup ¼

ffiffiffiffiffiffi
2q

bu

s
ð26Þ

At initial stages of a simulation, the shoreline position will follow the
ffiffi
t

p
dependence.

As time increases, however, the shoreline position will asymptotically approach the
fixed value in equation (26). This behavior is clearly seen in Figure 6 which plots
the numerical predictions of the shoreline movement under the conditions b ¼ 0:1 and
u ¼ 0:025.

The one-dimensional shoreline movement results, presented above, clearly
demonstrate that the proposed enthalpy shoreline tracking scheme is able to predict
the correct limit case behaviors. Encouraged with this performance, a more general
two-dimensional shoreline problem can be constructed by applying sediment source
terms of strength q ¼ 1 at the center nodes i ¼ 1; j ¼ 50 and i ¼ 1; j ¼ 51: This setting

Figure 5.
Shoreline positions with
time for a shoreline
growing into a constant
sloping ocean (slope b).
The symbols are
numerical predictions the
lines analytical values
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will lead to two-dimensional ocean front sðx; y; tÞ; whose exact shape is controlled by
the choice of behavior for the ocean basement. Two ocean basement models are
considered. The first sets a constant fixed depth ocean:

Gðx; y; tÞ ¼ 0:175; ð27Þ

a problem that exactly matches a heat transfer melting problem. The second imposes
an ocean basin that varies in space and time according to:

Gðx; y; tÞ ¼ 0:175 þ
yt=1; 000; 44:5 , x , 55:5

0; otherwise

(
ð28Þ

The ocean basement in this problem is initially at uniform depth, but as time advances
a centerline trench is formed by a hinged subsidence (equation (24)). The formation of
this trench, corresponding to a locally increasing latent heat value, should retard the
movement of the shoreline (melt front) along the center line of the domain.

Figure 7 shows predictions for the shore line position at simulation times of 100,
200, 400, 800, and 1,600 for the constant basement ocean, G given by equation (27). The
behavior is as expected; matching what would be observed for melting around a
constant heat source. In contrast, Figure 8 shows the shoreline positions, at identical
times, when the basement G accounts for the developing trench, equation (28). In this
case, a notch, “cove” like feature forms where the shoreline advance is retarded by the
trench development. Figure 9 shows a three-dimensional image of the above sea level
surface at simulation time t ¼ 1; 600 for this last case.

8. Conclusions
The solution of moving boundary problems related to melting has long been a major
research theme in numerical heat transfer applications. Recently (Swenson et al., 2000)

Figure 6.
Shoreline position with

time for a shoreline
growing into a ocean

undergoing hinge
subsidence
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it was recognized that melting problems are analogous to the geological time scale
movement of the shoreline in sedimentary basins. This paper has show that particular
versions of the shoreline model can be posed as a melting problem involving a space
and time dependent latent heat. An enthalpy model has been developed and an
associated fixed-grid, time-explicit algorithm has been verified by comparison with an
analytic similarity solution and a limit case geometric solution. This work has only
required a modest amount of method development, the novelty in the work firmly rests
in solving physically relevant, melting-like problems, which, through the specification
of a space and time dependent latent heat, contain unique features in the resulting
moving boundaries.

Figure 8.
Shoreline positions at time
t ¼ 100, 200, 400, 800, and
1,600 advancing from as
single input point into an
ocean with a centerline
trench evolving by hinge
subsidence

Figure 7.
Shoreline positions at time
t ¼ 100, 200, 400, 800, and
1,600 advancing from as
single input point into a
constant depth ocean
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Further work will include:
. Incorporation of a finite sloping sub-aqueous wedge into the fixed grid scheme.

This is an interesting case to investigate because such a feature can lead to
so-called “auto-retreat” (Swenson et al., 2000) of the shoreline – a point is reached
where the sediment flux can no longer sustain the shoreline position resulting a
retreat of the shoreline towards the shore.

. The development of implicit time solvers. A step, due to the variable latent heat,
that may require significant method development.
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